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Optimal suction of the boundary layer taking account 
of initial turbulence and surface roughness 
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I n  the paper, on the basis of the three-moment equations, simple formulae for 
properties of a laminar boundary layer with suction are obtained. An equation 
relating the transition point critical Reynolds number to initial turbulence 
and surface roughness is presented. An approximate method for prediction of 
optimal suction of a boundary layer, including the main effects controlling tran- 
sition of a laminar boundary layer into a turbulent one, is developed. 

Nomenclature 
X Co-ordinate along airfoil. 

xt 
layer. 

x t o  
layer. 

XO 

suction. 
Y 
uo Incoming flow velocity. 

U(X) 
layer. 

4 Y )  
%(X) Distribution of normal velocity along airfoil surface (local 

44 Boundary-layer thickness. 

a** = 1'2 (1 - 5) dy Momentum thickness. 

6" = I0'( 1 - ;) dy Displacement thickness. 

a:* 
S;* 
a:* 

A, 
43 

Co-ordinate of the point of transition with suction of boundary 

Co-ordinate of the point of transition without suction of bounda,ry 

Co-ordinate of the point of commencement of boundary-layer 

Co-ordinate along the normal to airfoil surface. 

Distribution of longitudinal velocity at the outer edge of boundary 

Distribution of longitudinal velocity across boundary layer. 

suction velocity). 

ou 

Momentum thickness at  the point of transition. 
Momentum thickness a t  the roughness element site. 
Momentum thickness a t  the point of commencement of boundary- 

' Smallest vortex ' dimension due to external flow turbulence. 
'Smallest vortex ' dimension due to vortices behind roughness 

layer suction. 

element. 
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Roughness element height. 
Characteristic dimension (length) of airfoil. 
Root mean square velocity fluctuation of incoming flow. 
Root mean square velocity fluctuation at  the outer edge of bound- 

Root mean square velocity fluctuation in the external boundary 

Pressure distribution at  the outer edge of boundary layer. 

Root mean square fluctuation of longitudinal pressure gradient at  

[g] Components caused by external flow turbulence and 

Local shear stress on airfoil surface. 
Kinematic viscosity. 
Liquid density. 

The Reynolds number. 

ary layer due to external flow turbulence. 

layer due to vortices behind roughness element. 

the outer edge of boundary layer. 

2 

vortices behind roughness element, respectively. 

and R , = s  The local Reynolds 
us** R** = ~ R x ~ = - ,  0 -, uxo R*Y: = us;* 

Y V V V 

numbers. 
Rg* and RZo Lower critical Reynolds numbers. 
R:* Critical Reynolds numbers at  the point of transition. 

Parameter of boundary-layer suction. 
2, s** t** = 0- 

dUs**2 f = -~ Shape factor of boundarylayer. ax v 
f, Shape factor of boundary layer at  the point of separation. 

V 

Boundary-layer parameter. 
S* H = -  

6"" 
6=-- 'wS**  Local coefficient of friction. 

Coefficient of laminar friction. 
VPU 

u0 

Q 
c = -  4 Initial turbulence. 

Constant quantities: a = 0.44; b = 5.48; A ,  = 0.22; B, = 0.21; B = 1.12; 
A 1 -  - 31.3; B, = 10; c = 9.55; c, = 1-88; c, = 1.18; D, = 0-25x 10-3; a = 0.56; 
H 0 -  - 2-59; H4 = 4;iq0 = 0.089; c, = 0.22; k = 0.194; m = 7.55. 

Theory 
A numerical solution of the problem on optimal suction of fluid from a bound- 

ary layer was originally obtained by Pretsch (1943). An analytical solution of 
the same problem was reported by the author (Kozlov 1963). Also Wieghardt 
(1954), Wortmann (1958) and Kozlov (1964) worked on the solution of a similar 
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problem for a boundary layer with longitudinal external pressure gradient. 
The last three works are based on momentum and energy equations and on 
'three moment ' equations, respectively. In these works the optimal liquid suc- 
tion from the boundary layer is assumed to be the distribution of the normal 
velocity over the airfoil surface when, in every cross-section of the boundary 
layer, the local Reynolds number is equal to its lower critical value calculated 
by the method of small disturbances developed in the theory of hydrodynamic 
stability. 

The analysis of the experimental data shows that laminarization of the bound- 
ary layer at  the airfoil by suction of liquid through a porous casing is possible 
because of the conditions of equality of the local Reynolds number to its critical 
value at the point of transition R:*. In  most cases the critical Reynolds number 
at the point of transition depends on the initial turbulence and airfoil roughness. 
Both factors are of great practical significance for calculations of a laminar 
boundary layer of an airfoil with a given roughness moving in a medium with 
low initial turbulence. In  this connexion estimation of possible influence of 
initial turbulence and surface roughness on the distribution of optimal suction 
velocity through a special porous surface of airfoils is of great practical interest. 

Now we shall determine the local Reynolds number for a boundary layer at 
the airfoil with suction. For this purpose a set of boundary-layer equations of 
the zeroth and second moments is used (Kozlov 19626). The zeroth-moment 
equation is written in the following form: 

where 

U" U' 
ax - U' u df - --f+-[[a+(B-2)t**-bf], 

the differentiation of equation ( 2 )  yields 

Substitution of formulae (2)-(3) into (1) and some algebraic manipulations 
give 

The equation of the second moment is used in the following form (Koslov 
1962 b): U" U' a df = -f+--(H-H,t**-H,cf). 

dx U' U Ho 

Substitution of (2)-(3) into (5) and appropriate algebraic transformations yield 



56 L. F .  Kozlov 

Then elimination of vo/U from (4) and (6) gives the differential equation for the 
local Reynolds number 

where 

aR**2 -__ + - k , R * * ' - [ [ a ( * + H ) ] [ ~ ( l + ~ ~ ) ] - ' =  U' 0, (7)  
ax u H, B - 2  B-2HO 

k, = [(ac-2)+-------- a 
B - 2  H, 

The boundary conditions are 

R** = R$* at x =  x,. 

Integration of (7)  using the boundary conditions (8) gives 

Now we determine the critical Reynolds number at  the point of transition of 
a laminar boundary layer into a turbulent one. We adopt Taylor's hypothesis 
(Taylor 1936) and assume in the subsequent discussion that turbulence in a 
laminar layer arises because of perturbation with a finite amplitude caused by 
vortices generated at  the airfoil surface because of premature local separations of 
a laminar layer. In  the case considered finite disturbances are introduced into a 
boundary layer by turbulence in the incoming flow or vortices arising in flows 
around roughness elements at  the airfoil surface. 

Premature local separation of a laminar layer is determined approximately by 
the following relation: 

The value of the shape factor f, at the separation point of the boundary layer 
depends on the intensity of liquid suction through the airfoil surface and is 
described by the suction parameter. For approximate calculation of the shape 
factor at  the point of separation the following approximate formula (Kozlov 
1962 b )  may be used : 

f, = f,, - kt**. (11) 

Since the pressure fluctuations due to turbulent motions are governed by the 
law of random effects, the mean square value of external pressure fluctuations is 
supposed to be governed by the following summation rule: 

[z] = Bj,+Fj. 2 

Turbulence in an incoming flow is assumed to be isotropic. When the point of 
transition is at  a certain distance from the forward stagnation point, then the 
airfoil surface will not affect the isotropic nature of turbulence at  the outer edge 
of the boundary layer. Then fluctuations of longitudinal pressure gradient are 
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related to the external velocities by the equations of the statistical turbulence 
theory (Taylor 1936): El1 N P ! ? '  

For a fluctuation flow caused by vortices stalled from the roughness element 
on the airfoil surface : 

A,  N a. (17) 

Substitution of the critical Reynolds number R:: = US?*/. and the Taylor 
parameter [e(L/L,)*] from relations (12)-( 14) into condition (10) reduces this. 
equation to the form 

R$" = R&*+ An( fs  + f  P 
[~(L/GJ'I' [(uh/ui) (WU) W n / ~ a ) *  (v/uL~)*I' + Bn(Ud/v)-' ( d / ~ , * * ) ~  * 

(18) 

The quantity RL* is introduced into equation (18) to satisfy the condition 
of damping of perturbations in the boundary layer caused by the external flow 
turbulence and surface roughness when the critical Reynolds number at the point 
of transition equals its lower value. This is necessary since as R$* -+ RF the 
fluctuation pressure gradient at the outer edge of the boundary layer does not 
effect essentially the transition because of rapid damping of fluctuations. Validity 
of such a transformation is confirmed by experiments. 

The following approximate formula (Wieghardt 1954) may be recommended 
for calculation of lower critical Reynolds number at different pressure gradients 
and laws of distributed suction: 

RF = exp (A,-B,H). 

To obtain more exact values of the lower critical Reynolds numbers, the study 
of the stability of the boundary-layer flow is required by the method of small 
disturbances. 

Kozlov (19623) obtained the following approximate formula by 'the three- 
moment ' method: 

H = Hn-C2t**-mf. (19) 

The formula is recommended for the following values of parameters: 

-0.08 < f < 0.08; 0 < t** < 0.5. 

The quantities u; and L, in formula (18) are the root mean square velocity 
fluctuation and the turbulence scale at  the outer edge of the boundary layer, 
respectively. Since in calculations the turbulence properties of the incoming 
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flow u; and L, are usually known, u; and L, should be expressed in terms of u; 
and Lo. To obtain the relations between them, we use the known formulae 
(Dorodnitsyn & Loitsyansky 1945) : 

0 
0.02 

1 .I 1.2 1.3 i 4 1-5 i -6 

FIGURE 1. Comparison of predicted and experimental data of tho Taylor number effect 
on turbulent transition of laminar boundary layer. -, predicted by formula (22). Schu- 
bauer’s experiments (see Dryden 1939) for elliptical cylinder: 0, lattice cell 2-5cm; 0 ,  
lattice cell 9.5cm; A, lattice cell 12.7 cm. b,, small semi-axis of ellipse. 

Substitution of relations (20) and (21) into (18) and necessary manipulations 
give the following expression for the critical Reynolds number: 

where 

For a special case of a hydrodynamically smooth surface (d = 0)’ formula 
(22) agrees with the results of Kozlov (1962a). 

Equation (22) includes two constant quantities A ,  and B, of which attempts 
at  prediction have failed. The analysis of the experimental data has shown that 
A,= 0.22 and B, = 0.21. 

Verification of the semi-theoretical formula (22) has been realized by compari- 
son of the present calculations and Schubauer’s experiments (see Dryden 1939) 
for an elliptical cylinder. The comparison (figure 1) has shown fair agreement of 
the predicted and experimental data. 
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In  engineering calculations the turbulence scale is not always known since its 
determination involves precise and tedious measurements. This quantity enters 
into equation ( 2 2 )  in power 4, so that even a considerable change of its value does 
not affect the Reynolds number. Besides, the functions Q and (Ud/v)* do not 
change appreciably either. 

The comparison of the predicted and experimental data has shown that it 
may be assumed with an accuracy sufficient for practical calculations that 

K ( - - )  A ,  Ud * g 2250. 

This considerably simplifies formula (18), which will be in a very convenient form 
for practical application: 

The constants C, and D, in (25) are 1.88 and 0.25 x 
The predicted and experimental values of critical Reynolds numbers at  the 

point of transition are plotted in figure 2 versus the amount of disturbance (see 
(25)). Accounting for the scatter of the experimental points, we may consider 
the agreement to be quite satisfactory except that portion of the curve which 
corresponds to inconsiderable (below 0.1 yo) turbulence of the incoming flow. 

In figure 3 the predicted and experimental data of critical Reynolds numbers 
for plates with various roughnesses of the surface are presented. The experiments 
(Tani, Hama & Mituishi 1954; Tani, Juchi & Yamamoto 1954; Feindt 1956) were 
carried out with small (8 0.15 %) and high ( E  2 0.8 yo) turbulence of the in- 
coming flow. The comparison shows satisfactory agreement of the values pre- 
dicted by formula ( 2 5 )  with the experimental data except in the case of very small 
turbulence and roughness ( E  < 0-15 yo and a/&$* = 0-75). In this situation the 
discrepancy may be attributed to the fact that the procedure adopted is not valid 
for transition of a laminar boundary layer into a turbulent one for very small 
velocity disturbances caused by initial flow turbulence or surface roughness. 

It is of interest to note that comparison of the present data with the plots 
reported by Crabtree (1958), Preston (1958) and Schlichting (1959) for predic- 
tion of the points of transition shows fair agreement with the results predicted 
by (25 )  for e = 0.15-0-35 %. This fact is another proof of the validity of ( 2 5 )  
since the data used for these plots are obtained within the range of turbulence 
of the incoming flow considered. 

Substitution of expressions (l l) ,  (18) and (19) into formula (25) and simple 
algebraic transformations yield the final expression for the critical Reynolds 
number at  the point of transition: 

respectively. 

(26) 
c [f +H/m(c, /m-k) t**-H/m]~ 

€2 + Dl(d/S,**)2 
R:* = exp (Al- B,H) + 
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6 ( % )  
FIGURE 2.  Comparison of predicted and experimental data of initial turbulence effect 
on the transition-point critical Reynolds number: -, predicted by formula ( 2 5 ) ;  [7, experi- 
ments (Dryden 1936); A, experiments (Hall & Hislop 1938); v, experiments (Wright & 
Bailey 1939); 0,  experiments (Schubauer & Skramstad 1947). 

0 0.5 1 .o 1.5 2.0 

d/&,** 

FIGURE 3. Comparison of predicted and experimental data on combined effect of initial 
turbulence andsurface roughness on transition-point critical Reynolds number: --,predicted 
by formula (25); 0, experiments (Tani, Juchi & Yamamoto 1954); 0, experiments (Feindt 
1956); 1, and 2, predicted values for the conditions of these experiments, respectively. 
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Further, with the critical Reynolds number at the point of transition known, 
the zeroth-moment equation (4) gives the formula for calculation of the optimal 
distribution of the suction velocity: 

a 1  
B - 2 R**' ( 2 7 )  R**-- ~ 

v 1 1 dR**' vU' b - 2  +-- U -  UB-2R** dx U2B-2  
- vo - - - ~ ~ 

The first term in (27) will be obtained from differential equation (7). After simple 
manipulations we have 

( 2 8 )  
1 1 dR**' vU' k, R**+ a aH4+H(B-2) 1 %u.pp=--p 

UB-ZR** dx U2 B-2 B - 2 H,(B - 2 )  + aH, R"* ' 

Substitution of expression (28 )  into ( 2 7 )  and the necessary calculations give the 
finite form of the formula for optimal distribution of the suction velocity through 
the porous surface along the airfoil chord 

a(H-H,) 1 
-. 

vU' b - 2 - k  5- 
U - F  B-2 R** +H,(B - 2 )  + aH, R** ' (29 )  

Having found the optimal distribution of the suction velocity from formula 
(29) by any available method (for example, that proposed by Kozlov 1962b),  
we may calculate the remaining properties of the boundary layer and the profile 
resistance of the airfoil. 

To satisfy the condition of equality of the local Reynolds number to its critical 
value at  the point of transition, the method of successive approximations is 
recommended for calculation. In the first approximation the longitudinal ex- 
ternal velocity gradient should be neglected, and the optimal distribution of the 
suction velocity along the chord of the airfoil is to be found by formula (29). In 
the second approximation the values of R:* and d/Sz* are specified appropriately 
to the suction law found in the first approximation. Repeated application of 
successive approximations allows calculation of the optimal distribution of the 
suction velocity as well as the remaining boundary-layer properties and the pro- 
file resistance of the airfoil. Practical calculations have shown that, for airfoils 
with the chord to thickness ratio above seven at  angles of incidence close to the 
optimal values, the second and the third approximations are practically the 
same. 

Consider in detail the particular case of a plate, for which the fundamental 
predicted equations ( 9 ) ,  ( 2 6 )  and (29 )  are simplified considerably and upon simple 
transformations become of the form 
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The formulae (30), (31) and (32) allow the necessary calculations to be carried 
out. In figures 4 and 5 the optimal distribution of the suction velocity is plotted 
versus the Reynolds number R, for various values of the initial turbulence of the 
incoming flow and surface roughness. 

The analysis of the data presented in these figures shows that optimal distribu- 
tion of the suction velocity and the total suction flow rate depend essentially on 
the initial turbulence and the surface roughness. With small initial flow turbu- 
lence ( B  = 0.2 %), the surface roughness has a considerable effect on the optimal 
suction. The required quantity of liquid to be sucked increases with roughness. 
With large initial turbulence ( B  = 2 %) change of the surface roughness has no 
essential effect on the optimal distribution of the suction velocity. 

5 6 7 8 

1% Ra! 

FIGURE 4 

0 
5 6 7 8 

1% R, 

FIGURE 5 

FIGURE 4. Optimal distribution of suction velocity for a plate versus the Reynolds number 
with initial turbulence E = 0-2 % : 1, d/S,** = 4; 2, d/S,** = 2; 3,d/S,** = 1. 

FIGURE 5. Optimal distribution of suction velocity for a plate with initial turbulence E = 2 yo 
and surface roughness d/S,** = 1 + 4. 

The drag coefficient of laminar friction with the optimal distribution of the 
suction velocity is calculated for a boundary layer on a plate as 

Kozlov (19623) showed that in the case of suction from the boundary layer 

y = y0-at**. (34) 

Using formula (34), we transform expression (33) into the following form : 
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Bearing in mind that for Re, < Rxo: vo/Uo = 0 and R** = 0.664 JR=, we obtain 
finally 

Both integrals in formula (36) have been calculated by graphical integration 
using the data of figures 4 and 5. 

Re 

FIGURE 6. Friction coefficient of a plate versus the Reynolds number; 1 and 2, optimal suc- 
tion for E = 0-2 yo and 8 = 2 %. respectively; 3, Blasius’s data for a laminar flow; 4, Prandtl- 
Schlichting’s data for a turbulent flow. 

In figure 6 numerical values of the friction drag coefficients for a plate with 
optimal suction of a laminar boundary layer are plotted versus the Reynolds 
number R,. In  this diagram, figure 1 is used for designation of the friction co- 
efficient of a laminar friction of plates with the optimal suction velocities for 
small initial turbulence (8 = 0.2%)’ and figure 2 for high initial turbulence 
(8 = 2 %). In this figure the coefficients of laminar and turbulent friction for 
plates without suction of the boundary layer according to Blasius’s (curve 3) 
and Prandtl-Schlichting’s data (curve 4) are also presented. 
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